This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011)
|
|
Ref |
Expression |
|
Hypotheses |
riotaeqbidv.1 |
|
|
|
riotaeqbidv.2 |
|
|
Assertion |
riotaeqbidv |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
riotaeqbidv.1 |
|
| 2 |
|
riotaeqbidv.2 |
|
| 3 |
2
|
riotabidv |
|
| 4 |
1
|
riotaeqdv |
|
| 5 |
3 4
|
eqtrd |
|