This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014)
|
|
Ref |
Expression |
|
Hypotheses |
unitinvcl.1 |
|
|
|
unitinvcl.2 |
|
|
|
ringinvcl.3 |
|
|
Assertion |
ringinvcl |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitinvcl.1 |
|
| 2 |
|
unitinvcl.2 |
|
| 3 |
|
ringinvcl.3 |
|
| 4 |
1 2
|
unitinvcl |
|
| 5 |
3 1
|
unitcl |
|
| 6 |
4 5
|
syl |
|