This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Lemma for ringlidm and ringridm . (Contributed by NM, 15-Sep-2011)
(Revised by Mario Carneiro, 27-Dec-2014)
|
|
Ref |
Expression |
|
Hypotheses |
ringidm.b |
|
|
|
ringidm.t |
|
|
|
ringidm.u |
|
|
Assertion |
ringidmlem |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringidm.b |
|
| 2 |
|
ringidm.t |
|
| 3 |
|
ringidm.u |
|
| 4 |
|
eqid |
|
| 5 |
4
|
ringmgp |
|
| 6 |
4 1
|
mgpbas |
|
| 7 |
4 2
|
mgpplusg |
|
| 8 |
4 3
|
ringidval |
|
| 9 |
6 7 8
|
mndlrid |
|
| 10 |
5 9
|
sylan |
|