This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ringgrpd

Description: A ring is a group. (Contributed by SN, 16-May-2024)

Ref Expression
Hypothesis ringgrpd.1 φ R Ring
Assertion ringgrpd φ R Grp

Proof

Step Hyp Ref Expression
1 ringgrpd.1 φ R Ring
2 ringgrp R Ring R Grp
3 1 2 syl φ R Grp