This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem rexuz

Description: Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005)

Ref Expression
Assertion rexuz M n M φ n M n φ

Proof

Step Hyp Ref Expression
1 eluz1 M n M n M n
2 1 anbi1d M n M φ n M n φ
3 anass n M n φ n M n φ
4 2 3 bitrdi M n M φ n M n φ
5 4 rexbidv2 M n M φ n M n φ