This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
rexrnmptw
Metamath Proof Explorer
Description: A restricted quantifier over an image set. Version of rexrnmpt with a
disjoint variable condition, which does not require ax-13 .
(Contributed by Mario Carneiro , 20-Aug-2015) Avoid ax-13 . (Revised by GG , 26-Jan-2024)
Ref
Expression
Hypotheses
rexrnmptw.1
⊢ F = x ∈ A ⟼ B
rexrnmptw.2
⊢ y = B → ψ ↔ χ
Assertion
rexrnmptw
⊢ ∀ x ∈ A B ∈ V → ∃ y ∈ ran ⁡ F ψ ↔ ∃ x ∈ A χ
Proof
Step
Hyp
Ref
Expression
1
rexrnmptw.1
⊢ F = x ∈ A ⟼ B
2
rexrnmptw.2
⊢ y = B → ψ ↔ χ
3
2
notbid
⊢ y = B → ¬ ψ ↔ ¬ χ
4
1 3
ralrnmptw
⊢ ∀ x ∈ A B ∈ V → ∀ y ∈ ran ⁡ F ¬ ψ ↔ ∀ x ∈ A ¬ χ
5
4
notbid
⊢ ∀ x ∈ A B ∈ V → ¬ ∀ y ∈ ran ⁡ F ¬ ψ ↔ ¬ ∀ x ∈ A ¬ χ
6
dfrex2
⊢ ∃ y ∈ ran ⁡ F ψ ↔ ¬ ∀ y ∈ ran ⁡ F ¬ ψ
7
dfrex2
⊢ ∃ x ∈ A χ ↔ ¬ ∀ x ∈ A ¬ χ
8
5 6 7
3bitr4g
⊢ ∀ x ∈ A B ∈ V → ∃ y ∈ ran ⁡ F ψ ↔ ∃ x ∈ A χ