This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
reximssdv
Metamath Proof Explorer
Description: Derivation of a restricted existential quantification over a subset (the
second hypothesis implies A C_ B ), deduction form. (Contributed by AV , 21-Aug-2022)
Ref
Expression
Hypotheses
reximssdv.1
⊢ φ → ∃ x ∈ B ψ
reximssdv.2
⊢ φ ∧ x ∈ B ∧ ψ → x ∈ A
reximssdv.3
⊢ φ ∧ x ∈ B ∧ ψ → χ
Assertion
reximssdv
⊢ φ → ∃ x ∈ A χ
Proof
Step
Hyp
Ref
Expression
1
reximssdv.1
⊢ φ → ∃ x ∈ B ψ
2
reximssdv.2
⊢ φ ∧ x ∈ B ∧ ψ → x ∈ A
3
reximssdv.3
⊢ φ ∧ x ∈ B ∧ ψ → χ
4
2 3
jca
⊢ φ ∧ x ∈ B ∧ ψ → x ∈ A ∧ χ
5
4
ex
⊢ φ → x ∈ B ∧ ψ → x ∈ A ∧ χ
6
5
reximdv2
⊢ φ → ∃ x ∈ B ψ → ∃ x ∈ A χ
7
1 6
mpd
⊢ φ → ∃ x ∈ A χ