This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
reuxfr
Metamath Proof Explorer
Description: Transfer existential uniqueness from a variable x to another
variable y contained in expression A . (Contributed by NM , 14-Nov-2004) (Revised by NM , 16-Jun-2017)
Ref
Expression
Hypotheses
reuxfr.1
⊢ y ∈ C → A ∈ B
reuxfr.2
⊢ x ∈ B → ∃ * y ∈ C x = A
Assertion
reuxfr
⊢ ∃! x ∈ B ∃ y ∈ C x = A ∧ φ ↔ ∃! y ∈ C φ
Proof
Step
Hyp
Ref
Expression
1
reuxfr.1
⊢ y ∈ C → A ∈ B
2
reuxfr.2
⊢ x ∈ B → ∃ * y ∈ C x = A
3
1
adantl
⊢ ⊤ ∧ y ∈ C → A ∈ B
4
2
adantl
⊢ ⊤ ∧ x ∈ B → ∃ * y ∈ C x = A
5
3 4
reuxfrd
⊢ ⊤ → ∃! x ∈ B ∃ y ∈ C x = A ∧ φ ↔ ∃! y ∈ C φ
6
5
mptru
⊢ ∃! x ∈ B ∃ y ∈ C x = A ∧ φ ↔ ∃! y ∈ C φ