This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
reusn
Metamath Proof Explorer
Description: A way to express restricted existential uniqueness of a wff: its
restricted class abstraction is a singleton. (Contributed by NM , 30-May-2006) (Proof shortened by Mario Carneiro , 14-Nov-2016)
Ref
Expression
Assertion
reusn
⊢ ∃! x ∈ A φ ↔ ∃ y x ∈ A | φ = y
Proof
Step
Hyp
Ref
Expression
1
euabsn2
⊢ ∃! x x ∈ A ∧ φ ↔ ∃ y x | x ∈ A ∧ φ = y
2
df-reu
⊢ ∃! x ∈ A φ ↔ ∃! x x ∈ A ∧ φ
3
df-rab
⊢ x ∈ A | φ = x | x ∈ A ∧ φ
4
3
eqeq1i
⊢ x ∈ A | φ = y ↔ x | x ∈ A ∧ φ = y
5
4
exbii
⊢ ∃ y x ∈ A | φ = y ↔ ∃ y x | x ∈ A ∧ φ = y
6
1 2 5
3bitr4i
⊢ ∃! x ∈ A φ ↔ ∃ y x ∈ A | φ = y