This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A theorem useful for eliminating the restricted existential uniqueness
hypotheses in reuxfr1 . (Contributed by NM, 15-Nov-2004)
|
|
Ref |
Expression |
|
Hypotheses |
reuhyp.1 |
|
|
|
reuhyp.2 |
|
|
Assertion |
reuhyp |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reuhyp.1 |
|
| 2 |
|
reuhyp.2 |
|
| 3 |
|
tru |
|
| 4 |
1
|
adantl |
|
| 5 |
2
|
3adant1 |
|
| 6 |
4 5
|
reuhypd |
|
| 7 |
3 6
|
mpan |
|