This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Internal direct products
reldmdprd
Metamath Proof Explorer
Description: The domain of the internal direct product operation is a relation.
(Contributed by Mario Carneiro , 25-Apr-2016) (Proof shortened by AV , 11-Jul-2019)
Ref
Expression
Assertion
reldmdprd
⊢ Rel ⁡ dom ⁡ DProd
Proof
Step
Hyp
Ref
Expression
1
df-dprd
⊢ DProd = g ∈ Grp , s ∈ h | h : dom ⁡ h ⟶ SubGrp ⁡ g ∧ ∀ x ∈ dom ⁡ h ∀ y ∈ dom ⁡ h ∖ x h ⁡ x ⊆ Cntz ⁡ g ⁡ h ⁡ y ∧ h ⁡ x ∩ mrCls ⁡ SubGrp ⁡ g ⁡ ⋃ h dom ⁡ h ∖ x = 0 g ⟼ ran ⁡ f ∈ h ∈ ⨉ x ∈ dom ⁡ s s ⁡ x | finSupp 0 g ⁡ h ⟼ ∑ g f
2
1
reldmmpo
⊢ Rel ⁡ dom ⁡ DProd