This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Topology
Quotient maps and quotient topology
regr1
Metamath Proof Explorer
Description: A regular space is R_1, which means that any two topologically distinct
points can be separated by neighborhoods. (Contributed by Mario
Carneiro , 25-Aug-2015)
Ref
Expression
Assertion
regr1
⊢ J ∈ Reg → KQ ⁡ J ∈ Haus
Proof
Step
Hyp
Ref
Expression
1
regtop
⊢ J ∈ Reg → J ∈ Top
2
toptopon2
⊢ J ∈ Top ↔ J ∈ TopOn ⁡ ⋃ J
3
1 2
sylib
⊢ J ∈ Reg → J ∈ TopOn ⁡ ⋃ J
4
eqid
⊢ x ∈ ⋃ J ⟼ y ∈ J | x ∈ y = x ∈ ⋃ J ⟼ y ∈ J | x ∈ y
5
4
regr1lem2
⊢ J ∈ TopOn ⁡ ⋃ J ∧ J ∈ Reg → KQ ⁡ J ∈ Haus
6
3 5
mpancom
⊢ J ∈ Reg → KQ ⁡ J ∈ Haus