This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
"Strong" transfinite recursion
recsfval
Metamath Proof Explorer
Description: Lemma for transfinite recursion. The definition recs is the union
of all acceptable functions. (Contributed by Mario Carneiro , 9-May-2015)
Ref
Expression
Hypothesis
tfrlem.1
⊢ A = f | ∃ x ∈ On f Fn x ∧ ∀ y ∈ x f ⁡ y = F ⁡ f ↾ y
Assertion
recsfval
⊢ recs ⁡ F = ⋃ A
Proof
Step
Hyp
Ref
Expression
1
tfrlem.1
⊢ A = f | ∃ x ∈ On f Fn x ∧ ∀ y ∈ x f ⁡ y = F ⁡ f ↾ y
2
dfrecs3
⊢ recs ⁡ F = ⋃ f | ∃ x ∈ On f Fn x ∧ ∀ y ∈ x f ⁡ y = F ⁡ f ↾ y
3
1
unieqi
⊢ ⋃ A = ⋃ f | ∃ x ∈ On f Fn x ∧ ∀ y ∈ x f ⁡ y = F ⁡ f ↾ y
4
2 3
eqtr4i
⊢ recs ⁡ F = ⋃ A