This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Other axiomatizations related to classical propositional calculus
Derive the Tarski-Bernays-Wajsberg axioms from Meredith's Second CO Axiom
re1tbw4
Metamath Proof Explorer
Description: tbw-ax4 rederived from merco2 .
This theorem, along with re1tbw1 , re1tbw2 , and re1tbw3 , shows
that merco2 , along with ax-mp , can be used as a complete
axiomatization of propositional calculus. (Contributed by Anthony Hart , 16-Aug-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
re1tbw4
⊢ ⊥ → φ
Proof
Step
Hyp
Ref
Expression
1
re1tbw3
⊢ φ → φ → φ → φ
2
re1tbw2
⊢ φ → φ → φ → φ
3
re1tbw1
⊢ φ → φ → φ → φ → φ → φ → φ → φ → φ → φ
4
2 3
ax-mp
⊢ φ → φ → φ → φ → φ → φ
5
1 4
ax-mp
⊢ φ → φ
6
re1tbw3
⊢ ⊥ → φ → φ → ⊥ → φ → ⊥ → φ
7
re1tbw2
⊢ ⊥ → φ → ⊥ → φ → φ → ⊥ → φ
8
re1tbw1
⊢ ⊥ → φ → ⊥ → φ → φ → ⊥ → φ → ⊥ → φ → φ → ⊥ → φ → ⊥ → φ → ⊥ → φ → ⊥ → φ
9
7 8
ax-mp
⊢ ⊥ → φ → φ → ⊥ → φ → ⊥ → φ → ⊥ → φ → ⊥ → φ
10
6 9
ax-mp
⊢ ⊥ → φ → ⊥ → φ
11
mercolem3
⊢ ⊥ → φ → φ → ⊥ → φ → ⊥ → φ
12
merco2
⊢ ⊥ → φ → φ → ⊥ → φ → ⊥ → φ → ⊥ → φ → ⊥ → φ → φ → φ → φ → φ → ⊥ → φ
13
11 12
ax-mp
⊢ ⊥ → φ → ⊥ → φ → φ → φ → φ → φ → ⊥ → φ
14
10 13
ax-mp
⊢ φ → φ → φ → φ → ⊥ → φ
15
5 14
ax-mp
⊢ φ → φ → ⊥ → φ
16
5 15
ax-mp
⊢ ⊥ → φ