This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Recursive definition generator
rdglim2a
Metamath Proof Explorer
Description: The value of the recursive definition generator at a limit ordinal, in
terms of indexed union of all smaller values. (Contributed by NM , 28-Jun-1998)
Ref
Expression
Assertion
rdglim2a
⊢ B ∈ C ∧ Lim ⁡ B → rec ⁡ F A ⁡ B = ⋃ x ∈ B rec ⁡ F A ⁡ x
Proof
Step
Hyp
Ref
Expression
1
rdglim2
⊢ B ∈ C ∧ Lim ⁡ B → rec ⁡ F A ⁡ B = ⋃ y | ∃ x ∈ B y = rec ⁡ F A ⁡ x
2
fvex
⊢ rec ⁡ F A ⁡ x ∈ V
3
2
dfiun2
⊢ ⋃ x ∈ B rec ⁡ F A ⁡ x = ⋃ y | ∃ x ∈ B y = rec ⁡ F A ⁡ x
4
1 3
eqtr4di
⊢ B ∈ C ∧ Lim ⁡ B → rec ⁡ F A ⁡ B = ⋃ x ∈ B rec ⁡ F A ⁡ x