This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ralun

Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion ralun x A φ x B φ x A B φ

Proof

Step Hyp Ref Expression
1 ralunb x A B φ x A φ x B φ
2 1 biimpri x A φ x B φ x A B φ