This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted class abstraction
rabeqf
Metamath Proof Explorer
Description: Equality theorem for restricted class abstractions, with bound-variable
hypotheses instead of distinct variable restrictions. (Contributed by NM , 7-Mar-2004)
Ref
Expression
Hypotheses
rabeqf.1
⊢ Ⅎ _ x A
rabeqf.2
⊢ Ⅎ _ x B
Assertion
rabeqf
⊢ A = B → x ∈ A | φ = x ∈ B | φ
Proof
Step
Hyp
Ref
Expression
1
rabeqf.1
⊢ Ⅎ _ x A
2
rabeqf.2
⊢ Ⅎ _ x B
3
1 2
nfeq
⊢ Ⅎ x A = B
4
eleq2
⊢ A = B → x ∈ A ↔ x ∈ B
5
4
anbi1d
⊢ A = B → x ∈ A ∧ φ ↔ x ∈ B ∧ φ
6
3 5
abbid
⊢ A = B → x | x ∈ A ∧ φ = x | x ∈ B ∧ φ
7
df-rab
⊢ x ∈ A | φ = x | x ∈ A ∧ φ
8
df-rab
⊢ x ∈ B | φ = x | x ∈ B ∧ φ
9
6 7 8
3eqtr4g
⊢ A = B → x ∈ A | φ = x ∈ B | φ