This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
r1tr2
Metamath Proof Explorer
Description: The union of a cumulative hierarchy of sets at ordinal A is a subset
of the hierarchy at A . JFM CLASSES1 th. 40. (Contributed by FL , 20-Apr-2011)
Ref
Expression
Assertion
r1tr2
⊢ ⋃ R 1 ⁡ A ⊆ R 1 ⁡ A
Proof
Step
Hyp
Ref
Expression
1
r1tr
⊢ Tr ⁡ R 1 ⁡ A
2
df-tr
⊢ Tr ⁡ R 1 ⁡ A ↔ ⋃ R 1 ⁡ A ⊆ R 1 ⁡ A
3
1 2
mpbi
⊢ ⋃ R 1 ⁡ A ⊆ R 1 ⁡ A