This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
r1lim
Metamath Proof Explorer
Description: Value of the cumulative hierarchy of sets function at a limit ordinal.
Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by NM , 4-Oct-2003) (Revised by Mario Carneiro , 16-Nov-2014)
Ref
Expression
Assertion
r1lim
⊢ A ∈ B ∧ Lim ⁡ A → R 1 ⁡ A = ⋃ x ∈ A R 1 ⁡ x
Proof
Step
Hyp
Ref
Expression
1
limelon
⊢ A ∈ B ∧ Lim ⁡ A → A ∈ On
2
r1fnon
⊢ R 1 Fn On
3
fndm
⊢ R 1 Fn On → dom ⁡ R 1 = On
4
2 3
ax-mp
⊢ dom ⁡ R 1 = On
5
1 4
eleqtrrdi
⊢ A ∈ B ∧ Lim ⁡ A → A ∈ dom ⁡ R 1
6
r1limg
⊢ A ∈ dom ⁡ R 1 ∧ Lim ⁡ A → R 1 ⁡ A = ⋃ x ∈ A R 1 ⁡ x
7
5 6
sylancom
⊢ A ∈ B ∧ Lim ⁡ A → R 1 ⁡ A = ⋃ x ∈ A R 1 ⁡ x