This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem r19.45v

Description: Restricted quantifier version of one direction of 19.45 . The other direction holds when A is nonempty, see r19.45zv . (Contributed by NM, 2-Apr-2004)

Ref Expression
Assertion r19.45v x A φ ψ φ x A ψ

Proof

Step Hyp Ref Expression
1 r19.43 x A φ ψ x A φ x A ψ
2 id φ φ
3 2 rexlimivw x A φ φ
4 3 orim1i x A φ x A ψ φ x A ψ
5 1 4 sylbi x A φ ψ φ x A ψ