This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem r19.21

Description: Restricted quantifier version of 19.21 . (Contributed by Scott Fenton, 30-Mar-2011)

Ref Expression
Hypothesis r19.21.1 x φ
Assertion r19.21 x A φ ψ φ x A ψ

Proof

Step Hyp Ref Expression
1 r19.21.1 x φ
2 r19.21t x φ x A φ ψ φ x A ψ
3 1 2 ax-mp x A φ ψ φ x A ψ