This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Circuits and cycles
pthspthcyc
Metamath Proof Explorer
Description: A pair <. F , P >. represents a path if it represents either a simple
path or a cycle. The exclusivity only holds for non-trivial paths
( F =/= (/) ), see cyclnspth . (Contributed by AV , 2-Oct-2025)
Ref
Expression
Assertion
pthspthcyc
⊢ F Paths ⁡ G P ↔ F SPaths ⁡ G P ∨ F Cycles ⁡ G P
Proof
Step
Hyp
Ref
Expression
1
pthisspthorcycl
⊢ F Paths ⁡ G P → F SPaths ⁡ G P ∨ F Cycles ⁡ G P
2
spthispth
⊢ F SPaths ⁡ G P → F Paths ⁡ G P
3
cyclispth
⊢ F Cycles ⁡ G P → F Paths ⁡ G P
4
2 3
jaoi
⊢ F SPaths ⁡ G P ∨ F Cycles ⁡ G P → F Paths ⁡ G P
5
1 4
impbii
⊢ F Paths ⁡ G P ↔ F SPaths ⁡ G P ∨ F Cycles ⁡ G P