This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem psstrd

Description: Proper subclass inclusion is transitive. Deduction form of psstr . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses psstrd.1 φ A B
psstrd.2 φ B C
Assertion psstrd φ A C

Proof

Step Hyp Ref Expression
1 psstrd.1 φ A B
2 psstrd.2 φ B C
3 psstr A B B C A C
4 1 2 3 syl2anc φ A C