This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem psssstrd

Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses psssstrd.1 φ A B
psssstrd.2 φ B C
Assertion psssstrd φ A C

Proof

Step Hyp Ref Expression
1 psssstrd.1 φ A B
2 psssstrd.2 φ B C
3 psssstr A B B C A C
4 1 2 3 syl2anc φ A C