This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem prtlem12

Description: Lemma for prtex and prter3 . (Contributed by Rodolfo Medina, 13-Oct-2010)

Ref Expression
Assertion prtlem12 ˙ = x y | u A x u y u Rel ˙

Proof

Step Hyp Ref Expression
1 relopabv Rel x y | u A x u y u
2 releq ˙ = x y | u A x u y u Rel ˙ Rel x y | u A x u y u
3 1 2 mpbiri ˙ = x y | u A x u y u Rel ˙