This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem prstcoc

Description: Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c φ C = ProsetToCat K
prstcnid.k φ K Proset
prstcoc.oc φ ˙ = oc K
Assertion prstcoc φ ˙ X = oc C X

Proof

Step Hyp Ref Expression
1 prstcnid.c φ C = ProsetToCat K
2 prstcnid.k φ K Proset
3 prstcoc.oc φ ˙ = oc K
4 1 2 3 prstcocval φ ˙ = oc C
5 4 fveq1d φ ˙ X = oc C X