This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
prsspwg
Metamath Proof Explorer
Description: An unordered pair belongs to the power class of a class iff each member
belongs to the class. (Contributed by Thierry Arnoux , 3-Oct-2016)
(Revised by NM , 18-Jan-2018)
Ref
Expression
Assertion
prsspwg
⊢ A ∈ V ∧ B ∈ W → A B ⊆ 𝒫 C ↔ A ⊆ C ∧ B ⊆ C
Proof
Step
Hyp
Ref
Expression
1
prssg
⊢ A ∈ V ∧ B ∈ W → A ∈ 𝒫 C ∧ B ∈ 𝒫 C ↔ A B ⊆ 𝒫 C
2
elpwg
⊢ A ∈ V → A ∈ 𝒫 C ↔ A ⊆ C
3
elpwg
⊢ B ∈ W → B ∈ 𝒫 C ↔ B ⊆ C
4
2 3
bi2anan9
⊢ A ∈ V ∧ B ∈ W → A ∈ 𝒫 C ∧ B ∈ 𝒫 C ↔ A ⊆ C ∧ B ⊆ C
5
1 4
bitr3d
⊢ A ∈ V ∧ B ∈ W → A B ⊆ 𝒫 C ↔ A ⊆ C ∧ B ⊆ C