This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Dedekind-cut construction of real and complex numbers
prpssnq
Metamath Proof Explorer
Description: A positive real is a subset of the positive fractions. (Contributed by NM , 29-Feb-1996) (Revised by Mario Carneiro , 11-May-2013)
(New usage is discouraged.)
Ref
Expression
Assertion
prpssnq
⊢ A ∈ 𝑷 → A ⊂ 𝑸
Proof
Step
Hyp
Ref
Expression
1
elnpi
⊢ A ∈ 𝑷 ↔ A ∈ V ∧ ∅ ⊂ A ∧ A ⊂ 𝑸 ∧ ∀ x ∈ A ∀ y y < 𝑸 x → y ∈ A ∧ ∃ y ∈ A x < 𝑸 y
2
simpl3
⊢ A ∈ V ∧ ∅ ⊂ A ∧ A ⊂ 𝑸 ∧ ∀ x ∈ A ∀ y y < 𝑸 x → y ∈ A ∧ ∃ y ∈ A x < 𝑸 y → A ⊂ 𝑸
3
1 2
sylbi
⊢ A ∈ 𝑷 → A ⊂ 𝑸