This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem prpssnq

Description: A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Assertion prpssnq A 𝑷 A 𝑸

Proof

Step Hyp Ref Expression
1 elnpi A 𝑷 A V A A 𝑸 x A y y < 𝑸 x y A y A x < 𝑸 y
2 simpl3 A V A A 𝑸 x A y y < 𝑸 x y A y A x < 𝑸 y A 𝑸
3 1 2 sylbi A 𝑷 A 𝑸