This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 12-Jun-2022)
|
|
Ref |
Expression |
|
Hypotheses |
preqsn.1 |
|
|
|
preqsn.2 |
|
|
Assertion |
preqsn |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
preqsn.1 |
|
| 2 |
|
preqsn.2 |
|
| 3 |
|
id |
|
| 4 |
2
|
a1i |
|
| 5 |
3 4
|
preqsnd |
|
| 6 |
1 5
|
ax-mp |
|
| 7 |
|
eqeq2 |
|
| 8 |
7
|
pm5.32ri |
|
| 9 |
6 8
|
bitr4i |
|