This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem pm2.38

Description: Theorem *2.38 of WhiteheadRussell p. 105. (Contributed by NM, 6-Mar-2008)

Ref Expression
Assertion pm2.38 ψ χ ψ φ χ φ

Proof

Step Hyp Ref Expression
1 id ψ χ ψ χ
2 1 orim1d ψ χ ψ φ χ φ