This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Properties of Hilbert subspaces
Projectors (cont.)
pjvec
Metamath Proof Explorer
Description: The set of vectors belonging to the subspace of a projection. Part of
Theorem 26.2 of Halmos p. 44. (Contributed by NM , 11-Apr-2006)
(New usage is discouraged.)
Ref
Expression
Assertion
pjvec
⊢ H ∈ C ℋ → H = x ∈ ℋ | proj ℎ ⁡ H ⁡ x = x
Proof
Step
Hyp
Ref
Expression
1
chss
⊢ H ∈ C ℋ → H ⊆ ℋ
2
sseqin2
⊢ H ⊆ ℋ ↔ ℋ ∩ H = H
3
1 2
sylib
⊢ H ∈ C ℋ → ℋ ∩ H = H
4
pjch
⊢ H ∈ C ℋ ∧ x ∈ ℋ → x ∈ H ↔ proj ℎ ⁡ H ⁡ x = x
5
4
rabbi2dva
⊢ H ∈ C ℋ → ℋ ∩ H = x ∈ ℋ | proj ℎ ⁡ H ⁡ x = x
6
3 5
eqtr3d
⊢ H ∈ C ℋ → H = x ∈ ℋ | proj ℎ ⁡ H ⁡ x = x