This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem pfxfn

Description: Value of the prefix extractor as function with domain. (Contributed by AV, 2-May-2020)

Ref Expression
Assertion pfxfn S Word V L 0 S S prefix L Fn 0 ..^ L

Proof

Step Hyp Ref Expression
1 pfxf S Word V L 0 S S prefix L : 0 ..^ L V
2 1 ffnd S Word V L 0 S S prefix L Fn 0 ..^ L