This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Partition-Equivalence Theorems
petidres
Metamath Proof Explorer
Description: A class is a partition by identity class restricted to it if and only if
the cosets by the restricted identity class are in equivalence relation on
it, cf. eqvrel1cossidres . (Contributed by Peter Mazsa , 31-Dec-2021)
Ref
Expression
Assertion
petidres
⊢ I ↾ A Part A ↔ ≀ I ↾ A ErALTV A
Proof
Step
Hyp
Ref
Expression
1
petidres2
⊢ Disj I ↾ A ∧ dom ⁡ I ↾ A / I ↾ A = A ↔ EqvRel ≀ I ↾ A ∧ dom ⁡ ≀ I ↾ A / ≀ I ↾ A = A
2
dfpart2
⊢ I ↾ A Part A ↔ Disj I ↾ A ∧ dom ⁡ I ↾ A / I ↾ A = A
3
dferALTV2
⊢ ≀ I ↾ A ErALTV A ↔ EqvRel ≀ I ↾ A ∧ dom ⁡ ≀ I ↾ A / ≀ I ↾ A = A
4
1 2 3
3bitr4i
⊢ I ↾ A Part A ↔ ≀ I ↾ A ErALTV A