This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Partition-Equivalence Theorems
petid
Metamath Proof Explorer
Description: A class is a partition by the identity class if and only if the cosets by
the identity class are in equivalence relation on it. (Contributed by Peter Mazsa , 31-Dec-2021)
Ref
Expression
Assertion
petid
⊢ I Part A ↔ ≀ I ErALTV A
Proof
Step
Hyp
Ref
Expression
1
petid2
⊢ Disj I ∧ dom ⁡ I / I = A ↔ EqvRel ≀ I ∧ dom ⁡ ≀ I / ≀ I = A
2
dfpart2
⊢ I Part A ↔ Disj I ∧ dom ⁡ I / I = A
3
dferALTV2
⊢ ≀ I ErALTV A ↔ EqvRel ≀ I ∧ dom ⁡ ≀ I / ≀ I = A
4
1 2 3
3bitr4i
⊢ I Part A ↔ ≀ I ErALTV A