This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
ovmpot
Metamath Proof Explorer
Description: The value of an operation is equal to the value of the same operation
expressed in maps-to notation. (Contributed by GG , 16-Mar-2025)
(Revised by GG , 13-Apr-2025)
Ref
Expression
Assertion
ovmpot
⊢ A ∈ C ∧ B ∈ D → A x ∈ C , y ∈ D ⟼ x F y B = A F B
Proof
Step
Hyp
Ref
Expression
1
oveq12
⊢ x = A ∧ y = B → x F y = A F B
2
eqid
⊢ x ∈ C , y ∈ D ⟼ x F y = x ∈ C , y ∈ D ⟼ x F y
3
ovex
⊢ A F B ∈ V
4
1 2 3
ovmpoa
⊢ A ∈ C ∧ B ∈ D → A x ∈ C , y ∈ D ⟼ x F y B = A F B