This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of TakeutiZaring p. 37. (Contributed by NM, 9-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordin |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr | ||
| 2 | ordtr | ||
| 3 | trin | ||
| 4 | 1 2 3 | syl2an | |
| 5 | inss2 | ||
| 6 | trssord | ||
| 7 | 5 6 | mp3an2 | |
| 8 | 4 7 | sylancom |