This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinals (continued)
ordelsuc
Metamath Proof Explorer
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal.
Exercise 8 of TakeutiZaring p. 42 and its converse. (Contributed by NM , 29-Nov-2003)
Ref
Expression
Assertion
ordelsuc
⊢ A ∈ C ∧ Ord ⁡ B → A ∈ B ↔ suc ⁡ A ⊆ B
Proof
Step
Hyp
Ref
Expression
1
ordsucss
⊢ Ord ⁡ B → A ∈ B → suc ⁡ A ⊆ B
2
1
adantl
⊢ A ∈ C ∧ Ord ⁡ B → A ∈ B → suc ⁡ A ⊆ B
3
sucssel
⊢ A ∈ C → suc ⁡ A ⊆ B → A ∈ B
4
3
adantr
⊢ A ∈ C ∧ Ord ⁡ B → suc ⁡ A ⊆ B → A ∈ B
5
2 4
impbid
⊢ A ∈ C ∧ Ord ⁡ B → A ∈ B ↔ suc ⁡ A ⊆ B