This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Cardinal numbers
onsdom
Metamath Proof Explorer
Description: Any well-orderable set is strictly dominated by an ordinal number.
(Contributed by Jeff Hankins , 22-Oct-2009) (Proof shortened by Mario
Carneiro , 15-May-2015)
Ref
Expression
Assertion
onsdom
⊢ A ∈ dom ⁡ card → ∃ x ∈ On A ≺ x
Proof
Step
Hyp
Ref
Expression
1
harcl
⊢ har ⁡ A ∈ On
2
harsdom
⊢ A ∈ dom ⁡ card → A ≺ har ⁡ A
3
breq2
⊢ x = har ⁡ A → A ≺ x ↔ A ≺ har ⁡ A
4
3
rspcev
⊢ har ⁡ A ∈ On ∧ A ≺ har ⁡ A → ∃ x ∈ On A ≺ x
5
1 2 4
sylancr
⊢ A ∈ dom ⁡ card → ∃ x ∈ On A ≺ x