This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
oneltri
Metamath Proof Explorer
Description: The elementhood relation on the ordinals is complete, so we have triality.
Theorem 1.9(iii) of Schloeder p. 1. See ordtri3or . (Contributed by RP , 15-Jan-2025)
Ref
Expression
Assertion
oneltri
⊢ A ∈ On ∧ B ∈ On → A ∈ B ∨ B ∈ A ∨ A = B
Proof
Step
Hyp
Ref
Expression
1
eloni
⊢ A ∈ On → Ord ⁡ A
2
eloni
⊢ B ∈ On → Ord ⁡ B
3
ordtri3or
⊢ Ord ⁡ A ∧ Ord ⁡ B → A ∈ B ∨ A = B ∨ B ∈ A
4
1 2 3
syl2an
⊢ A ∈ On ∧ B ∈ On → A ∈ B ∨ A = B ∨ B ∈ A
5
3orcomb
⊢ A ∈ B ∨ A = B ∨ B ∈ A ↔ A ∈ B ∨ B ∈ A ∨ A = B
6
4 5
sylib
⊢ A ∈ On ∧ B ∈ On → A ∈ B ∨ B ∈ A ∨ A = B