This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem omndtos

Description: A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018)

Ref Expression
Assertion omndtos M oMnd M Toset

Proof

Step Hyp Ref Expression
1 eqid Base M = Base M
2 eqid + M = + M
3 eqid M = M
4 1 2 3 isomnd M oMnd M Mnd M Toset a Base M b Base M c Base M a M b a + M c M b + M c
5 4 simp2bi M oMnd M Toset