This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: If every term in a sum with an odd number of terms is odd, then the sum
is odd. (Contributed by AV, 14-Aug-2021)
|
|
Ref |
Expression |
|
Hypotheses |
evensumodd.a |
|
|
|
evensumodd.b |
|
|
|
evensumodd.o |
|
|
|
oddsumodd.a |
|
|
Assertion |
oddsumodd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evensumodd.a |
|
| 2 |
|
evensumodd.b |
|
| 3 |
|
evensumodd.o |
|
| 4 |
|
oddsumodd.a |
|
| 5 |
1 2 3
|
sumodd |
|
| 6 |
4 5
|
mtbid |
|