This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Even and odd numbers
oddp1d2
Metamath Proof Explorer
Description: An integer is odd iff its successor divided by 2 is an integer. This is a
representation of odd numbers without using the divides relation, see
zeo and zeo2 . (Contributed by AV , 22-Jun-2021)
Ref
Expression
Assertion
oddp1d2
⊢ N ∈ ℤ → ¬ 2 ∥ N ↔ N + 1 2 ∈ ℤ
Proof
Step
Hyp
Ref
Expression
1
oddp1even
⊢ N ∈ ℤ → ¬ 2 ∥ N ↔ 2 ∥ N + 1
2
2z
⊢ 2 ∈ ℤ
3
2ne0
⊢ 2 ≠ 0
4
peano2z
⊢ N ∈ ℤ → N + 1 ∈ ℤ
5
dvdsval2
⊢ 2 ∈ ℤ ∧ 2 ≠ 0 ∧ N + 1 ∈ ℤ → 2 ∥ N + 1 ↔ N + 1 2 ∈ ℤ
6
2 3 4 5
mp3an12i
⊢ N ∈ ℤ → 2 ∥ N + 1 ↔ N + 1 2 ∈ ℤ
7
1 6
bitrd
⊢ N ∈ ℤ → ¬ 2 ∥ N ↔ N + 1 2 ∈ ℤ