This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal arithmetic
oa0
Metamath Proof Explorer
Theorem oa0
Description: Addition with zero. Proposition 8.3 of TakeutiZaring p. 57.
Definition 2.3 of Schloeder p. 4. (Contributed by NM , 3-May-1995)
(Revised by Mario Carneiro , 8-Sep-2013)
Ref
Expression
Assertion
oa0
⊢ A ∈ On → A + 𝑜 ∅ = A
Proof
Step
Hyp
Ref
Expression
1
0elon
⊢ ∅ ∈ On
2
oav
⊢ A ∈ On ∧ ∅ ∈ On → A + 𝑜 ∅ = rec ⁡ x ∈ V ⟼ suc ⁡ x A ⁡ ∅
3
1 2
mpan2
⊢ A ∈ On → A + 𝑜 ∅ = rec ⁡ x ∈ V ⟼ suc ⁡ x A ⁡ ∅
4
rdg0g
⊢ A ∈ On → rec ⁡ x ∈ V ⟼ suc ⁡ x A ⁡ ∅ = A
5
3 4
eqtrd
⊢ A ∈ On → A + 𝑜 ∅ = A