This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Limits
o1bdd2
Metamath Proof Explorer
Description: If an eventually bounded function is bounded on every interval
A i^i ( -oo , y ) by a function M ( y ) , then the function is
bounded on the whole domain. (Contributed by Mario Carneiro , 9-Apr-2016) (Proof shortened by Mario Carneiro , 26-May-2016)
Ref
Expression
Hypotheses
o1bdd2.1
⊢ φ → A ⊆ ℝ
o1bdd2.2
⊢ φ → C ∈ ℝ
o1bdd2.3
⊢ φ ∧ x ∈ A → B ∈ ℂ
o1bdd2.4
⊢ φ → x ∈ A ⟼ B ∈ 𝑂 ⁡ 1
o1bdd2.5
⊢ φ ∧ y ∈ ℝ ∧ C ≤ y → M ∈ ℝ
o1bdd2.6
⊢ φ ∧ x ∈ A ∧ y ∈ ℝ ∧ C ≤ y ∧ x < y → B ≤ M
Assertion
o1bdd2
⊢ φ → ∃ m ∈ ℝ ∀ x ∈ A B ≤ m
Proof
Step
Hyp
Ref
Expression
1
o1bdd2.1
⊢ φ → A ⊆ ℝ
2
o1bdd2.2
⊢ φ → C ∈ ℝ
3
o1bdd2.3
⊢ φ ∧ x ∈ A → B ∈ ℂ
4
o1bdd2.4
⊢ φ → x ∈ A ⟼ B ∈ 𝑂 ⁡ 1
5
o1bdd2.5
⊢ φ ∧ y ∈ ℝ ∧ C ≤ y → M ∈ ℝ
6
o1bdd2.6
⊢ φ ∧ x ∈ A ∧ y ∈ ℝ ∧ C ≤ y ∧ x < y → B ≤ M
7
3
abscld
⊢ φ ∧ x ∈ A → B ∈ ℝ
8
3
lo1o12
⊢ φ → x ∈ A ⟼ B ∈ 𝑂 ⁡ 1 ↔ x ∈ A ⟼ B ∈ ≤ 𝑂 ⁡ 1
9
4 8
mpbid
⊢ φ → x ∈ A ⟼ B ∈ ≤ 𝑂 ⁡ 1
10
1 2 7 9 5 6
lo1bdd2
⊢ φ → ∃ m ∈ ℝ ∀ x ∈ A B ≤ m