This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem numexp

Description: Elevating to a nonnegative power commutes with canonical numerator. Similar to numsq , extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023)

Ref Expression
Assertion numexp A N 0 numer A N = numer A N

Proof

Step Hyp Ref Expression
1 numdenexp A N 0 numer A N = numer A N denom A N = denom A N
2 1 simpld A N 0 numer A N = numer A N