This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Combinations of difference, union, and intersection of two classes
nssinpss
Metamath Proof Explorer
Description: Negation of subclass expressed in terms of intersection and proper
subclass. (Contributed by NM , 30-Jun-2004) (Proof shortened by Andrew
Salmon , 26-Jun-2011)
Ref
Expression
Assertion
nssinpss
⊢ ¬ A ⊆ B ↔ A ∩ B ⊂ A
Proof
Step
Hyp
Ref
Expression
1
inss1
⊢ A ∩ B ⊆ A
2
1
biantrur
⊢ A ∩ B ≠ A ↔ A ∩ B ⊆ A ∧ A ∩ B ≠ A
3
dfss2
⊢ A ⊆ B ↔ A ∩ B = A
4
3
necon3bbii
⊢ ¬ A ⊆ B ↔ A ∩ B ≠ A
5
df-pss
⊢ A ∩ B ⊂ A ↔ A ∩ B ⊆ A ∧ A ∩ B ≠ A
6
2 4 5
3bitr4i
⊢ ¬ A ⊆ B ↔ A ∩ B ⊂ A