This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem notnotb

Description: Double negation. Theorem *4.13 of WhiteheadRussell p. 117. (Contributed by NM, 3-Jan-1993)

Ref Expression
Assertion notnotb φ ¬ ¬ φ

Proof

Step Hyp Ref Expression
1 notnot φ ¬ ¬ φ
2 notnotr ¬ ¬ φ φ
3 1 2 impbii φ ¬ ¬ φ