This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Miscellaneous theorems about integers
nnenom
Metamath Proof Explorer
Description: The set of positive integers (as a subset of complex numbers) is
equinumerous to omega (the set of finite ordinal numbers). (Contributed by NM , 31-Jul-2004) (Revised by Mario Carneiro , 15-Sep-2013)
Ref
Expression
Assertion
nnenom
⊢ ℕ ≈ ω
Proof
Step
Hyp
Ref
Expression
1
omex
⊢ ω ∈ V
2
nn0ex
⊢ ℕ 0 ∈ V
3
eqid
⊢ rec ⁡ x ∈ V ⟼ x + 1 0 ↾ ω = rec ⁡ x ∈ V ⟼ x + 1 0 ↾ ω
4
3
hashgf1o
⊢ rec ⁡ x ∈ V ⟼ x + 1 0 ↾ ω : ω ⟶ 1-1 onto ℕ 0
5
f1oen2g
⊢ ω ∈ V ∧ ℕ 0 ∈ V ∧ rec ⁡ x ∈ V ⟼ x + 1 0 ↾ ω : ω ⟶ 1-1 onto ℕ 0 → ω ≈ ℕ 0
6
1 2 4 5
mp3an
⊢ ω ≈ ℕ 0
7
nn0ennn
⊢ ℕ 0 ≈ ℕ
8
6 7
entr2i
⊢ ℕ ≈ ω