This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm is the supremum of the value of a linear operator in the closed unit ball. (Contributed by Mario Carneiro, 19-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoleub2.n | ||
| nmoleub2.v | |||
| nmoleub2.l | |||
| nmoleub2.m | |||
| nmoleub2.g | |||
| nmoleub2.w | |||
| nmoleub2.s | |||
| nmoleub2.t | |||
| nmoleub2.f | |||
| nmoleub2.a | |||
| nmoleub2.r | |||
| nmoleub2a.5 | |||
| Assertion | nmoleub2a |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoleub2.n | ||
| 2 | nmoleub2.v | ||
| 3 | nmoleub2.l | ||
| 4 | nmoleub2.m | ||
| 5 | nmoleub2.g | ||
| 6 | nmoleub2.w | ||
| 7 | nmoleub2.s | ||
| 8 | nmoleub2.t | ||
| 9 | nmoleub2.f | ||
| 10 | nmoleub2.a | ||
| 11 | nmoleub2.r | ||
| 12 | nmoleub2a.5 | ||
| 13 | idd | ||
| 14 | ltle | ||
| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | nmoleub2lem2 |