This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The norm of a nonzero element is nonzero. (Contributed by Mario
Carneiro, 4-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
nmf.x |
|
|
|
nmf.n |
|
|
|
nmeq0.z |
|
|
Assertion |
nmne0 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmf.x |
|
| 2 |
|
nmf.n |
|
| 3 |
|
nmeq0.z |
|
| 4 |
1 2 3
|
nmeq0 |
|
| 5 |
4
|
necon3bid |
|
| 6 |
5
|
biimp3ar |
|